High Penetration VRE's in Pacific Island Countries: Small grids and Off-grid

Technical and Planning Challenges and Opportunities

energising our nation

Janendra Prasad

Janendra.Prasad@solomonpower.com.sb

Solomon Power

The Solomon Islands Electricity Authority (SIEA) trading as Solomon Power

Vertically integrated SOE- Owns, operates and maintains the national electricity grid in the Solomon Islands

Capital infrastructure development (SBD \$1bn)- improve reliability, accessibility, and affordability

Grid

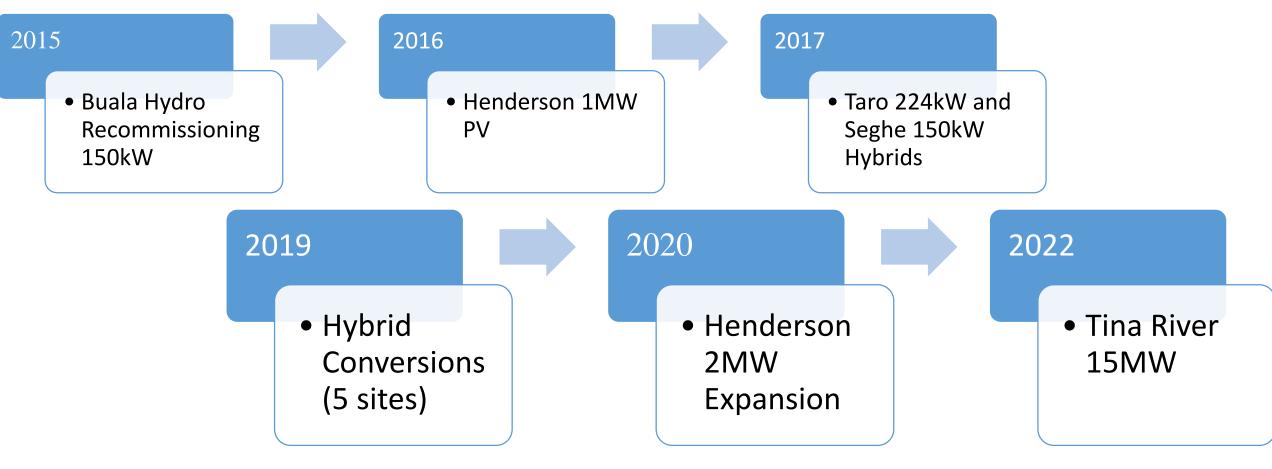
33/11/0.4kV electricity network MD approx. 16 MW.

Lungga and Honiara-34.4MW

1 MW Solar Farm

16,000 customers

Diesel 70% of generation costs


Total = 90.65 GWh

PV = 1.5GWh

1.6% Renewable

Renewable Energy Roadmap

- ➤ New Hybrid Sites: 3-5 sites per year
- > BESS

2030-100% Renewable

Henderson Solar Farm

Location: Honiara, approx. 6kms

form Lungga Power Station

Capacity: 1020kWp

Grid Connected at 11kV

PV Modules: TRINA 275W/265W

Inverter: 17 x Sunny Tripower 60

Comms: Inverter Manager, Dual

Radios

Funding: Aid UAE 60%, NZ 40%

Commissioned June 2016

Henderson Solar Farm Grid Connection

Issues-Henderson Solar Farm

Road Access
Quality Issues
Site Security
Weak Grid Connection
Communications
Vegetation Management

Taro Hybrid Scheme

Ex provincial government site Existing network and customer Land reclamation

Location: Honiara, Solomon Islands

Operator: Solomon Power Commissioning: 5/13/2017

PV system power: 224.000 kWp

Annual Production: approx. 336,000 kWh (1,500 kWh/kWp)

CO2 avoided: Approx. 235.2 tons per annum

Modules: 800 x Trina Solar Energy TSM-280DD05.082 (II)

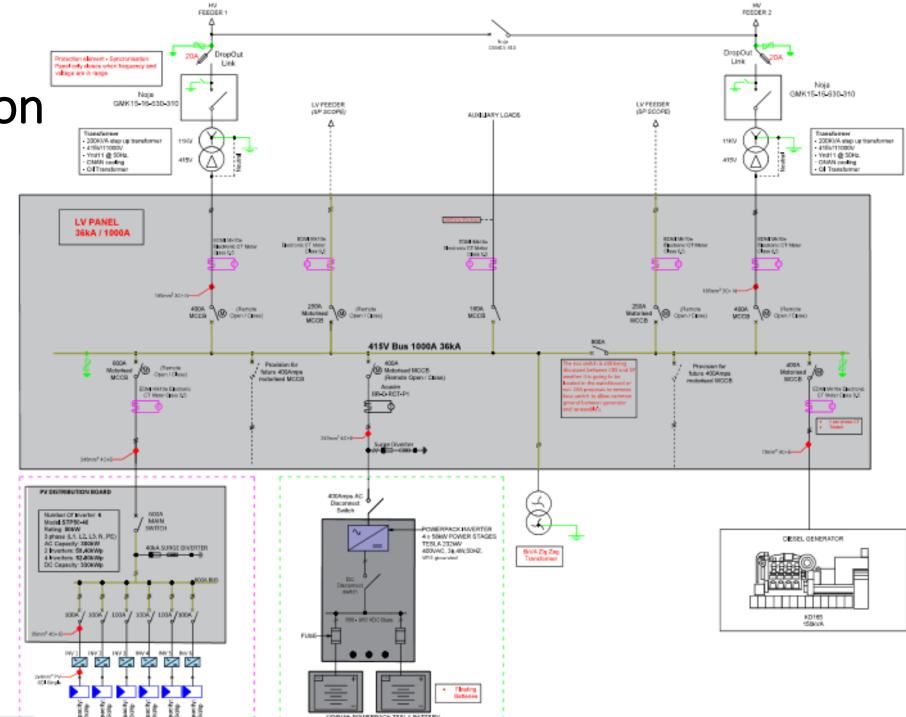
Azimuth angle: 0° Angle of inclination: 10°

Communication: 🛤 SMA Cluster Controller

Inverter: 6 x Sunny Island 8.0H

8 x Sunny Tripower 25000TL-30

Seghe


Statistics	
PV System Rating	168kWp
PV Inverters	150kW
Battery Inverters	90kW
Battery- SLA	0.77MWh
Standby Genset	165kVA/132kW
Max Demand	9kWp
Total Battery Charging	30kW
Number Customers	86

Hybrid Conversion

Munda, Kirakira, Lata, Tulagi, Malu

Anti-Islanding
Protection schemes
LV/HV Feeders paralleling
Fault levels, high
impedance faults
System Configuration,
split bus
Control & Integration
Inrush Current

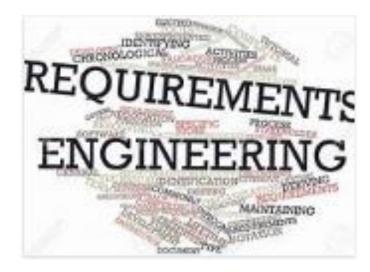
Challenges

- ➤ Land availability and access, complex land owning and administration
- ➤ Long term planning, unavailability of credible data
- ➤ Diverse and scattered population and load centres
- ➤ Consumer behavior, affordability
- > Procurement procedures, purchasing local materials
- > Cost of doing business, including fuel
- > Shipping and logistics, heavy equipment, containers etc
- > Accommodation
- > Site security during construction and ongoing
- ➤ Unexploded Ordinances (UXO's)
- > Expertise
- ➤ Non- standard solution, increased OPEX
- > Documentation, as built drawings, user manuals etc.

What do we as a Utility need to do better?

Grid connection study

Long term strategic planning


Stakeholder engagement (internal, external)

Design and implementation standards

Industry collaboration, research, best practice

Project delivery, design review, execution

Standardised solution and products

Capability & Expertise

Stakeholder Group	Key actions from the other stakeholder groups that would better support our work?
Utilities	Review Electricity Act, Process and Procedure, Consultation, Collaboration

Consultants

Recognize the unique nature of PIC's environment
One size does not fit all
Local Engagement
Sustainable Solutions

KISS

Government

National Energy Policy

Review SOE Act,

Land Reform

Research

Into issues relevant to PIC's

Donors/Finance

Into issues relevant to PIC's
Economic model off grid systems for remote communities
Output based aid rather than \$'s as measure for success
Common Approach

Opportunities

Engineering and Technology

- Training and Accreditation
- Standardization
- BESS, G-1
- Hydro/PHES
- Biomass
- Renewable Integration
- SCADA
- Plug and Play Systems
- Dispatchable VRE
- EV's

Economic and Planning

- Local Community
 Group
 Involvement
- Tariff
- Increase PV%
- Local Employment

Finance and Investment

- Business Model
- Life Cycle Costing vs Capital Cost
- IPP/PPA
- Rooftop PV's
- Incentives

Policy and Governance

- Tariff Structure
- Fuel Tax
- Facilitate IPP
 Arrangement
- Land Reform
- Regulatory reform

Tina River

Thank you

Tangio tu mus! (pidgin)

